NOTATION The following notation is used on this card:

- n = sample size
- μ = population mean
- σ = population stdev
- \bar{x} = sample mean
- s = sample stdev
- Q_j = jth quartile
- P = population proportion
- O = observed frequency
- E = expected frequency
- d = paired difference
- \hat{p} = sample proportion
- S_{xx} = population standard deviation
- S_{xy} = linear correlation coefficient
- Q_0 = first quartile
- Q_3 = third quartile
- N = population size
- σ = sample standard deviation
- r = coefficient of determination
- b_1 = sample slope
- b_0 = sample intercept
- \hat{y} = fitted value
- $\hat{\sigma}^2$ = estimated variance
- $\hat{\sigma}^2$ = estimated standard deviation
- \bar{y} = sample mean
- s^2 = sample variance
- SSR = regression sum of squares
- SSE = error sum of squares
- SST = total sum of squares
- R^2 = coefficient of determination
- IQR = interquartile range
- z = standard normal variable

CHAPTER 5 Probability and Random Variables

- Probability for equally likely outcomes:

 \[P(E) = \frac{f}{N} \]

 where f denotes the number of ways event E can occur and N denotes the total number of outcomes possible.

- Special addition rule:

 \[P(A \text{ or } B \text{ or } C \cdots) = P(A) + P(B) + P(C) + \cdots \]

 (A, B, C, \ldots mutually exclusive)

- Complementation rule: $P(E) = 1 - P(\text{not } E)$

- General addition rule: $P(A \text{ or } B) = P(A) + P(B) - P(A \& B)$

- Mean of a discrete random variable X:

 \[\mu = \Sigma_x P(X = x) \]

- Standard deviation of a discrete random variable X:

 \[\sigma = \sqrt{\Sigma(x - \mu)^2 P(X = x)} \] or \[\sigma = \sqrt{\Sigma x^2 P(X = x) - \mu^2} \]

- Factorial: $k! = k(k - 1) \cdots 2 \cdot 1$

- Binomial coefficient:

 \[\binom{n}{x} = \frac{n!}{x!(n-x)!} \]

- Binomial probability formula:

 \[P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \]

 where n denotes the number of trials and p denotes the success probability.

- Mean of a binomial random variable: $\mu = np$

- Standard deviation of a binomial random variable: $\sigma = \sqrt{np(1-p)}$

CHAPTER 7 The Sampling Distribution of the Sample Mean

- Mean of the variable \bar{x}: $\mu_{\bar{x}} = \mu$

- Standard deviation of the variable \bar{x}: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

CHAPTER 8 Confidence Intervals for One Population Mean

- Sample size for estimating μ:

 \[n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E} \right)^2 \]

 rounded up to the nearest whole number.

CHAPTER 10 Inferences for Two Population Means

- Studentized version of the variable \(\bar{x} \):
 \[
 t = \frac{\bar{x} - \mu}{s/\sqrt{n}}
 \]

- \(t \)-interval for \(\mu \) (\(\sigma \) unknown, normal population or large sample):
 \[
 \bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}
 \]
 with \(df = n - 1 \).

CHAPTER 9 Hypothesis Tests for One Population Mean

- \(z \)-test statistic for \(H_0: \mu = \mu_0 \) (\(\sigma \) known, normal population or large sample):
 \[
 z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}
 \]

- \(t \)-test statistic for \(H_0: \mu = \mu_0 \) (\(\sigma \) unknown, normal population or large sample):
 \[
 t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}
 \]
 with \(df = n - 1 \).

CHAPTER 11 Inferences for Population Proportions

- Sample proportion:
 \[
 \hat{p} = \frac{x}{n},
 \]
 where \(x \) denotes the number of members in the sample that have the specified attribute.

- One-sample \(z \)-interval for \(p \):
 \[
 \hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
 \]
 (Assumption: both \(x \) and \(n - x \) are 5 or greater)

- Margin of error for the estimate of \(p \):
 \[
 E = z_{\alpha/2} \cdot \sqrt{\hat{p}(1 - \hat{p})/n}
 \]

- Sample size estimating \(p \):
 \[
 n = \frac{0.25 \left(\frac{z_{\alpha/2}}{E} \right)^2}{\hat{p}(1 - \hat{p})}
 \]
 or
 \[
 n = \frac{\hat{p}(1 - \hat{p})}{\hat{p}(1 - \hat{p})}
 \]
 rounded up to the nearest whole number (\(g \) = “educated guess”)

- One-sample \(z \)-test statistic for \(H_0: p = p_0 \):
 \[
 z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}
 \]
 (Assumption: both \(np_0 \) and \(n(1 - p_0) \) are 5 or greater)

- Pooled sample proportion:
 \[
 \hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2}
 \]

- Two-sample \(z \)-test statistic for \(H_0: p_1 = p_2 \):
 \[
 z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)(1/n_1) + (1/n_2)}}
 \]
 (Assumptions: independent samples; \(x_1, n_1 - x_1, x_2, n_2 - x_2 \) are all 5 or greater)
CHAPTER 13 Analysis of Variance (ANOVA)

- Two-sample z-interval for \(p_1 - p_2 \):
 \[
 (\hat{p}_1 - \hat{p}_2) \pm z_{a/2} \cdot \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)/n_1 + \hat{p}_2(1 - \hat{p}_2)/n_2}{}}
 \]
 \(\text{(Assumptions: independent samples; } x_1, n_1 - x_1, x_2, n_2 - x_2 \text{ are all 5 or greater) } \)

- Margin of error for the estimate of \(p_1 - p_2 \):
 \[
 E = z_{a/2} \cdot \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)/n_1 + \hat{p}_2(1 - \hat{p}_2)/n_2}{}}
 \]

- Sample size for estimating \(p_1 - p_2 \):
 \[
 n_1 = n_2 = 0.5 \left(\frac{z_{a/2}^2}{E} \right)^2
 \]
 or
 \[
 n_1 = n_2 = \left(\frac{\hat{p}_{18}(1 - \hat{p}_{18}) + \hat{p}_{28}(1 - \hat{p}_{28})}{E} \right)^2
 \]
 rounded up to the nearest whole number (\(g = \text{“educated guess”} \))

CHAPTER 12 Chi-Square Procedures

- Expected frequencies for a chi-square goodness-of-fit test:
 \[
 E = np
 \]

- Test statistic for a chi-square goodness-of-fit test:
 \[
 \chi^2 = \Sigma(O - E)^2 / E
 \]
 with df = \(k - 1 \), where \(k \) is the number of possible values for the variable under consideration.

- Expected frequencies for a chi-square independence test:
 \[
 E = \frac{R \cdot C}{n}
 \]
 where \(R \) = row total and \(C \) = column total.

- Test statistic for a chi-square independence test:
 \[
 \chi^2 = \Sigma(O - E)^2 / E
 \]
 with df = \((r - 1)(c - 1)\), where \(r \) and \(c \) are the number of possible values for the two variables under consideration.

CHAPTER 13 Analysis of Variance (ANOVA)

- Notation in one-way ANOVA:
 - \(k \) = number of populations
 - \(n \) = total number of observations
 - \(\bar{x} \) = mean of all \(n \) observations
 - \(n_j \) = size of sample from Population \(j \)
 - \(\bar{x}_j \) = mean of sample from Population \(j \)
 - \(s_j^2 \) = variance of sample from Population \(j \)
 - \(T_j \) = sum of sample data from Population \(j \)

- Defining formulas for sums of squares in one-way ANOVA:
 \[
 \begin{align*}
 SST &= \Sigma(x - \bar{x})^2 \\
 SSTR &= \Sigma n_j(\bar{x}_j - \bar{x})^2 \\
 SSE &= \Sigma(n_j - 1)s_j^2
 \end{align*}
 \]

- One-way ANOVA identity: \(SST = SSTR + SSE \)

- Computing formulas for sums of squares in one-way ANOVA:
 \[
 \begin{align*}
 SST &= \Sigma(x - \bar{x})^2 / n \\
 SSTR &= \Sigma(T_j^2 / n_j) - (\Sigma x)^2 / n \\
 SSE &= SST - SSTR
 \end{align*}
 \]

- Mean squares in one-way ANOVA:
 \[
 MSTR = \frac{SSTR}{k - 1}, \quad MSE = \frac{SSE}{n - k}
 \]

- Test statistic for one-way ANOVA (independent samples, normal populations, and equal population standard deviations):
 \[
 F = \frac{MSTR}{MSE}
 \]
 with df = \((k - 1, n - k)\).

CHAPTER 14 Inferential Methods in Regression and Correlation

- Population regression equation: \(y = \beta_0 + \beta_1 x \)

- Standard error of the estimate: \(s_e = \sqrt{\frac{SSE}{n - 2}} \)

- Test statistic for \(H_0: \beta_1 = 0 \):
 \[
 t = \frac{b_1}{s_e / \sqrt{Sxx}}
 \]
 with df = \(n - 2 \).

- Confidence interval for \(\beta_1 \):
 \[
 b_1 \pm t_{a/2} \cdot \frac{s_e}{\sqrt{Sxx}}
 \]
 with df = \(n - 2 \).

- Confidence interval for the conditional mean of the response variable corresponding to \(x_p \):
 \[
 \hat{y}_p \pm t_{a/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_p - \Sigma x/n)^2}{Sxx}}
 \]
 with df = \(n - 2 \).

- Prediction interval for an observed value of the response variable corresponding to \(x_p \):
 \[
 \hat{y}_p \pm t_{a/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_p - \Sigma x/n)^2}{Sxx}}
 \]
 with df = \(n - 2 \).

- Test statistic for \(H_0: \rho = 0 \):
 \[
 t = \frac{r}{\sqrt{1 - r^2}} \sqrt{\frac{n - 2}{n - 2}}
 \]
 with df = \(n - 2 \).